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Abstract. We present a video segmentation algorithm that accurately
�nds object boundaries, and does not require any user assistance. After
�ltering the input video, markers are selected. Around each marker, a
volume is grown by evaluating the local color and texture features. The
grown volumes are re�ned and motion trajectories are extracted. Self-
descriptors for each volume, mutual-descriptors for a pair of volumes
are computed from trajectories. These descriptors designed to capture
motion, shape as well as spatial characteristics of volumes. In the �ne-to-
coarse clustering stage, volumes are merged into objects by evaluating
their descriptors. Clustering is carried out until the motion similarity
of merged objects at that iteration becomes small. A multi-resolution
object tree that gives the video object planes for every possible number of
objects is generated. Test results prove the e�ectiveness of the algorithm.

1 Introduction

It is possible to segment video objects either under user control, semi-automatic,
or unsupervised, i.e., fully automatic. User-controlled segmentation is exceed-
ingly laborious and obviously far from processing amount of nowadays video
data. In the semi-automatic case, user can provide segmentation for the �rst
frame of the video. The problem then becomes one of video object tracking.
In the fully automatic case, the problem is to �rst identify the video object,
then to track the object through time and space with no user assistance. Me-
thodically, object segmentation techniques can be grouped into three classes:
region-based methods using a homogeneous color criterion [1], object-based ap-
proaches utilizing a homogeneous motion criterion [2], and object tracking [3].
Although color-oriented techniques work well in some situations where the input
data set is relatively simple, clean, and �ts the model well, they lack generality
and robustness. The main problem arises from the fact that a video object can
contain totally di�erent colors. On the other hand, works in the motion oriented
segmentation domain start with an assumption that a semantic video object has
homogeneous motion [4]. These motion segmentation works can be simply sepa-
rated into two broad classes: boundary placement schemes and region extraction
schemes [5]. Most of them are based on rough optical ow estimation or unreli-
able spatiotemporal segmentation. As a result, they su�er from the inaccuracy
of motion boundaries. The last class of methods that is related to semantic video
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Fig. 1. Flow diagram of the video segmentation algorithm.

object extraction is tracking [6]. However, the tracking algorithms need user in-
terface, and the performance of the tracking algorithms depends extensively on
the initial segmentation. In general, most of the object extraction algorithms
treat segmentation as a 2-D inter-or-intra frame processing problem with some
additional motion model assumptions or smoothing constraints by ignoring the
3-D nature of the video data.

To develop an algorithm that blends intra-frame color and texture based
spatial segmentation schemes with inter-frame motion estimation techniques,
we consider video sequence as a 3-D volumetric data, that we call it as video-
cube, but not a collection of 2-D images. Thus, the semantic object information
can be propagated forward and as well as backward in time without saddling
into initial segmentation accuracy or tracking limitations.

A general framework of the algorithm is shown in Fig. 1. In Section II, the
video-cube concept is introduced. Section III describes the stages of �ltering,
marker selection, volume growing, re�ning, and clustering volumes into objects.
The test results and discussion are included in the last section.

2 Formation of Video-Cube

By registering the raw and processed image frames along the time axis as
shown in Fig. 2, a video-cube V (x; y; t) 1 � x � xM , 1 � y � yM , and
1 � t � tM is constricted. Each element of video-cube V corresponds to a vec-
tor v(x; y; t) = [y; u; v; �1; : : : ; �K ]

T that consists of color and texture features
of the spatiotemporal point (x; y; t). Here, y; u, and v stand for the luminance
and chrominance features, �1; : : : ; �K are the normalized texture features. For
simplicity, we will denote each component as a subscript, e.g., vy instead of
v(x; y; t)y .

We preferred the YUV color space over the RGB. Most of the existing color
segmentation approaches have utilized the RGB color space although the RGB
space has machine oriented chromatics rather than human oriented chromatics.
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Fig. 2.Video-cube generation from the raw and processed images of the video sequence.

One other disadvantage of the RGB space is the dependency of all three pa-
rameters from the light intensity. The Y UV space performs in accordance with
human reception and more importantly, inter-color distances can be computed
using the L2-norm.

The texture components v�1 ; : : : ;v�K are obtained by Gabor transform [7].
Gabor �lters are quadrature �lters and can be used to extract a certain wave-
length and orientation from an image with a speci�ed bandwidth. 2-D Gabor
�lters h(x; y) have the functional form

h(x; y) = g(x; y)e�2�(ux+vy); g(x; y) =
1

2��2g
e
�

x2+y2

2��2g (1)

where �2g speci�es e�ective width, and u; v specify modulation that has spatial

frequency f =
p
u2 + v2 and direction � = tan�1(v=u). Then the texture scores

are found by

v� = jh(x; y)
 I(x; y)j: (2)

We chose the values for the spatial frequency f = 2; 4; 8 and the direction � =
0; �=4; �=2; 3�=4 , which leads to a total of 12 features. The computed texture
scores are normalized as described in [8].

3 Object Segmentation

3.1 Pre-Filtering

The color channels of the input video vy;vu;vv are �rst �ltered to remove out
noise. Another reason of pre-�ltering is to prepare video-cube to the volume
growing stage. Elimination of the image ickers prevents from excessive segmen-
tation, and decreases computation load signi�cantly. A fast 3 � 3 median �lter
[9] that exploits 2-D coherence is utilized together with a 5 � 5 Gaussian �lter
to remove noise and smoothen image irregularities.
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3.2 Marker Assignment

A video object is assumed to be made of smaller parts. Such parts are the group
of points that are spatially consistent, i.e., color and texture distributions are
uniform within. The grouped points, called as volumes, are expanded from seed
points, called markers, as in the watershed transform [10]. The marker points
serves as \basins" in the growing process. Note that, not the spatial position of a
marker but its features are intended here. For each marker, a volume is assigned
and volume's attributes are initialized. Therefore, a marker point should be
selected such that it can characterize its enclosing volume as relevant as possible.
The points have low local diversity are good candidates to represent their local
neighborhood. A marker point mi can be selected in three ways:

� Uniformly distributed: The V is divided into identical smaller cubes and
their centers are selected as markers. However, an edge point can be chosen
as well, which reduces the accuracy of volume growing.

� Minimum gradient magnitude: Markers are selected if the gradient magni-
tude is minimum. Let S be the set of all possible spatiotemporal points, i.e.,
it is all the points of V initially. The gradient magnitude is computed from
the color channels, and the minimum gradient magnitude point is chosen
as a marker. A preset neighborhood around that marker is removed from
the set S. The next minimum in the remaining set is chosen, and selection
process repeated until no point remains in the video-cube.

� Minimum gradient with volume growing: The minimum mi is chosen as
above. Instead of removing a preset neighborhood around the marker, a
volume Wi is grown as explained in the next section, and all the points of
the volume is removed from the set S

mi = argmin
S
rV (x; y; t) ; S = V � i[

j=1
Wj : (3)

Finding minimum is a computationally expensive process. Rather than searching
the full-resolution video-cube V , a down-converted version is used. More com-
putational reduction is achieved by dividing down-converted video-cube V into
slices in time or other axes. Minimum is found for the �rst slice, and a volume
is grown, then the next minimum is searched in the next slice, and so forth.

3.3 Volume Growing

Volumes are enlarged as \inating balloons" from markers by applying distance
criteria. For each volume Wi, a feature vector !i that is similar to the video-
cube point's feature vector is de�ned. Two distance criteria dg ,dl are designed.
The �rst criterion dg measures the distance between the feature vector of the
current volume and the candidate point. In the spatial sense, this criterion is a
volume-wise \global" measure. The second criterion dl determines the distance
between the feature vectors of the current volume and another point that is
already included in the current volume and also adjoint to the candidate. Thus,



5

the second criterion can be viewed as a \local" measure. A global threshold �g
helps limiting the range of feature distance, i.e., color variation in the volume.
Local threshold �l prevents from trespassing edges even the global threshold
permits. The global and local thresholds are adaptively determined from the
video-cube V . Let x� be an unmarked candidate point that is adjoint to the
current volume. Let x+ be another point adjoint to x� but already included in
the current volume Wi. Then, the �rst global distance dg is de�ned as

dg(!
i;v�) =

X
k

j!ik � v�k j k : y; u; v; �1; :::; �12 (4)

where v� and v+ are the feature vectors of x� and x+. Similarly, the second
local distance dn is

dl(!
i;v�) =

X
k

jv+k � v�k j k : y; u; v; �1; :::; �12: (5)

If the distances dg and dl are smaller then �g and �l, the point x� is included
in the volume Wi. The neighboring point x� is set as an active surface point
for Wi, and the feature vector for the marker is updated accordingly. In the
next iteration, the neighboring pixels of the active surface points are examined.
Volume growing is repeated until no point remains in the video-cube.

The thresholds are made adaptable to input video by using the variance and
dynamic range of the features. Variance of a feature gives information about
the distribution of that feature in the video-cube. A small variance indicates
smooth distribution, whereas, high variance refers to texture and edgeness. To
The global threshold should be tuned up large if the variance is high and it
should be scaled to the dynamic range. Let I represent a feature, i.e, I � Y for
luminance. The global variance �2 and mean � are simply

�2 =
1

M

X
x;y;t2V

(I(x; y; t)� �)2; � =
1

M

X
x;y;t2V

I(x; y; t): (6)

where M is the total number of points. The dynamic range � for is

� = max I(x; y; t)�min I(x; y; t) ; x; y; t 2 V: (7)

Then the global threshold �g is then assigned by scaling the dynamic range as

�g = �
�

� + 1
(8)

where � > 1 is the sensitivity parameter that sets how �ne the �nal segmentation
should be. It is observed that a good choice is � � 2. The local threshold �l(x; y; t)
is the average of the discontinuity between the neighboring point features scaled
with a relative edgeness score:

�l(x; y; t) = ~� � ~�(x; y; t)
~� =

1

2M

X
x;y;t2V

jI(x; y; t)� I(x� 1; y; t)j+ jI(x; y; t)� I(x; y � 1; t)j

~�(x; y; t) = max I(i; j; t)�min I(i; j; t) x� 2; y � 2 � i; j � x+ 2; y + 2
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(a) (b)

Fig. 3. Trajectories; (a) before clustering, (b) at the 7ht object level of Children seq.

To fasten extraction of these statistics, only the �rst image of the video can be
used instead of the whole video-cube V .

After volume growing, the video-cube is divided into multiple smaller parts.
Some of these parts are negligible in size, however, they e�ect the computational
load if the clustering stage. Also, some points, such as edges, are not grouped into
any volume at all. To assign ungrouped points to a volume, the volume growing
thresholds are relaxed iteratively. At each iteration, volumes are inated towards
the unmarked points until no more point remains. Small volumes are blended
into the bordering most similar volumes that gives the best combination of the
greatest mutual surface, the smallest color distance, the smallest mutual volume,
and the highest compactness ratio as de�ned in the next section.

3.4 Self and Mutual Descriptors

Descriptors are used to understand various aspects of the volumes. The volumes
Wi are represented by a set of self descriptors f(i) and mutual descriptors g(i; j)
as summarized in Table 1. These descriptors identify motion, spatial, and color
characteristics, as well as the mutual correlation. The volumes will be grouped
with respect to their descriptors at the clustering stage in order to assemble the
objects. For each volume Wi, a trajectory Ti(t) = [Xi(t); Yi(t)]

T is extracted by
computing the frame-wise averages of volume's points coordinates

Ti(t) =

�
Xi(t)
Yi(t)

�
=

� 1
Nt

P
xt

1
Nt

P
yt

�
; (xt; yt; t) 2 Wi: (9)

Trajectories are the center of masses of regions in an image frame, hence they ap-
proximate the translational motion of the region. This is a nice property that can
be used to initialize parameters in motion model �tting stage. Sample trajecto-
ries can be seen in Fig. 3 a-b. Then, the distance�dij(t) between the trajectories
Ti(t) and Tj(t) at time t is calculated to determine motion based descriptors

�dij(t) =
q
(Xi(t)�Xj(t))2 + (Yi(t)� Yj(t))2: (10)
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color mean f1(i)
1
Ni

P
vy(xk) ; xk 2 Wi

volume f2(i)
S
xk ; xk 2 Wi

surface f3(i)
P

xk \ xl ; xk 2 Wi xl 2Wj i 6= j

compactness f4(i) f2(i)=(f3(i))
2

vertical translation f5(i) y1;i � yN;i

horizontal translation f6(i) x1;i � xN;i

route length f7(i)
P
jTi(t)� Ti(t� 1)j

average x position f8(i)
1
Ni

P
X(xk) ; xk 2Wi

average y position f9(i)
1
Ni

P
Y (yk) ; xk 2 Wi

existence f10(i)
P

it ; it = 1 Ti(t) 6= 0

mean of distance g1(i; j)
1

Ni\Nj

P
�dij(t)

variance of distance g2(i; j)
1

Ni\Nj

P
(�dij(t)� g1(i; j))

2

maximum distance g3(i; j) max�dij(t)

directional di�erence g4(i; j)
P
jTi(t)� Ti(t� 1)� Tj(t) + Tj(t� 1)j

compactness ratio g5(i; j)
f4(Wi[Wj)

f4(Wi)+f4(Wj)

mutual boundary ratio g6(i; j) f3(i) + f3(j)� f3(Wi [Wj)=f3(i)

color di�erence g7(i; j) jf1(i)� f1(j)j

coexistence g8(i; j)
P

it ^ jt ; it = 1 Ti(t) 6= 0

Table 1. Self and Mutual descriptors

Motion characteristics such as vertical and horizontal motion, route length, mean
and variance of distance, direction di�erence, and average change in the distance
are derived from the trajectories. Therefore, without a computationally expen-
sive method, the motion information is blended into segmentation eÆciently.
Each descriptor is linearly normalized to [0; 1] by using its maximum and mini-
mum at last.

3.5 Clustering

A �ne-to-coarse type hierarchical merging method is chosen since the video-
cube already divided into small parts before the clustering. The most similar
volume pairs are merged to decrease the number of the volumes at each iteration.
We de�ne "similarity" as the degree of relevance of volumes in motion and
shape. Two volumes are similar if their motion trajectories are consistent and
they built a compact shape when combined together. Color aspects are omitted;
partly because it was already included in volume growing, and also portions of
a semantically meaningful object do not have to possess the same color aspects,
i.e., a human face made up from di�erent color regions, mouth, skin, hair, etc.

The most suitable descriptors are found to be variance of trajectory dis-
tance g2(i; j) for motion, and the compactness g4(i; j) and mutual boundary
ratio g6(i; j) for shape relevance. Each volume Wi is compared to its neighbor-
ing volumes Wj , and a similarity score S(i; j) for the pair is determined if the
pair satis�es a set of constraints. The constraint set is embedded to prevent from
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Fig. 4. Multi-resolution object tree.

degenerate cases. An example of such a case is that a volume encircling a smaller
volume and causing the highest compactness ratio. Although such volumes mo-
tions may be inconsistent, still they will get a high similarity score. Another
example of degenerate case is parts of the two objects that are not adjoint but
perfectly aligned in motion. The shape relevance will be very low; although the
motion is consistent, the similarity score could be small. An e�ective similarity
score is formulated as

Sij = � log(g2(i; j)) + g4(i; j) + g6(i; j): (11)

After all similarity scores are computed for the possible volume pairs, the volume
pair (i0; j0) that gives the maximum similarity score are merged together, the
descriptors are updated and normalized accordingly.

3.6 Object Number Estimation

Clustering is performed until the candidate volumes to be merged become in-
consistent in motion. Motion inconsistency is measured by the variance of the
trajectory distance descriptor g2(i; j). If the trajectory distance g2(i

0

m; j
0

m) of the
most consistent pair in the current object level m is considerably higher than the
g2(i

0

m�1; j
0

m�1) at the previous level, the last merge is assumed to be a violation
of the motion similarity. Thus, segmentation is halted:

@g2(i
0

m; j
0

m)

@m
� 1 ; i0m; j

0

m = argmax(Sij) at level m (12)

A multi-resolution object tree as illustrated in Fig. 4 is generated from the
clustering results. By multi-resolution tree, segmentation is not repeated in case
the number of objects is changed later. Also, this structure enables imposing
relational constraints and analyzing object properties by graph theory methods.
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4 Test Results and Conclusion

The proposed algorithm has been tested with standard MPEG sequences. Fig. 5
presents sample results. The �rst row (Fig. 5 a-b) shows original frames from two
test sequences. The initial volumes after volume growing stage are given in the
second row (Fig. 5 c-d). Here, volumes are color coded for illustration purposes.
The initial number of volumes are 42 and 27 respectively. We noticed that the
adaptive threshold estimation method enables us to con�ne the initial number of
volumes to 20 � 50 which is a very reasonable initial range for most sequences.
Figures 5 e-f are the intermediate clustering results. Segmentation stopped at
m = 4 and m = 2 object levels respectively without any user interface. The
backgrounds and object boundaries were detected accurately.

The test results con�rmed that the object extraction is robust even when
the motion is large. Because no separate motion computation is involved in seg-
mentation, our algorithm is computationally faster than any optical ow based
or motion �eld modeling method that usually need some initial segmentation.
Having an obvious advantage over the stochastic segmentation techniques, an
object-wise multi-resolution representation is generated after clustering; there-
fore the extraction objects is not repeated in case the number of objects is
changed. No user segmentation of object regions is involved, which is mostly
required by object tracking based methods.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. (a-b) Frames form the input sequences, (c-d) initial volumes after volume grow-
ing, (e-f) intermediate clustering results at object levels m = 20� 12 respectively, and
(g-h) the �nal segmentation results.


